МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Красноярского края Управление образования администрации Рыбинского района МБОУ СОШ № 1 г. Заозерного

СОГЛАСОВАНО	УТВЕРЖДЕНО
Зам. директора по ВР	Директор школы
Буянкова Т.И	Крук И.В
No1 of 28.08.24r	№ 01-10-214 of 30.08.24r

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Робототехника»

Направленность программы: техническая Уровень программы: базовый Возраст детей 8-12 Срок реализации

Составитель: педагог дополнительного образования Штейнер Никита Сергеевич

1. Комплекс основных характеристик программы 1.1 Пояснительная записка.

Дополнительная общеразвивающая программа «Робототехника » (далее – Программа) разработана для реализации на базе МБОУ СОШ №1 г. Заозерного.

Нормативно-правовое обеспечение программы.

Программа разработана в соответствии со следующими документами:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- Проект Концепции развития дополнительного образования детей до 2030 года;
- Приказ Минпросвещения РФ от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015 года;
- СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи;

Программа предназначена для обучающихся в возрасте 8 -12 лет. Форма реализации — очная. Срок реализации программы составляет 1 год. Объем учебной нагрузки — 144 часа.

Уровень освоения программы: базовый.

Направленность: техническая ориентирована на формирование и развитие научного мировоззрения, освоение методов научного познания мира, развитие исследовательских, прикладных, конструкторских, инженерных способностей учащихся в области точных наук и технического творчества. Сфера возможной будущей профессиональной деятельности «Человек Техника».

Новизна программы

Новизна программы состоит в занимательной форме знакомства обучающихся с основами робототехники, радиоэлектроники и программирования микроконтроллеров для роботов. Избегая сложных математических формул, на практике, через эксперимент, обучающиеся постигают физику процессов, происходящих в роботах, включая двигатели, датчики, источники питания и микроконтроллеры.

В программу включены темы по принципам расчетов простейших механических систем и алгоритмов их автоматического функционирования под управлением программируемых контроллеров, программированию на компьютере

Актуальность.

Актуальность данной программы обусловлена современными требованиями модернизации образования, потребностью общества а также потенциалом материально-технического обеспечения программы. Программа базируется на использовании в образовательном процессе конструкторов LEGO MINDSTORMS EDUCATION EV3 и аппаратно-программного обеспечения, как инструмента для обучения детей конструированию, моделированию и компьютерному управлению на занятиях. Разработка и реализация данной программы способствовала необходимости внедрения новых идей, принципов, педагогических технологий.

Отличительные особенности программы

Конструктор LEGO EV3 обеспечивает простоту при сборке начальных моделей, что позволяет ученикам получить результат в пределах одного или пары уроков. И при этом возможности в изменении 6 моделей и программ — очень широкие, и такой подход позволяет учащимся усложнять модель и программу, проявлять самостоятельность в изучении темы. Программное обеспечение LEGO MINDSTORMS Education EV3 обладает очень широкими возможностями, в частности, позволяет представлять свои проекты прямо в среде программного обеспечения LEGO EV3

Адресат программы:

Возраст детей 8-12

Наполняемость групп:1 года обучения – 8-12 человек

Сроки и объем освоения программы:

1 год обучения: 144 часа, 2 раза в неделю по 2 часа

Формы обучения и виды занятий.

Форма обучения – очная, с использованием ресурсов электронного обучения, при необходимости использование дистанционных технологий.

Формы занятий: практические занятия, мастер-классы, викторины, участие в конкурсах.

Режим занятий. Занятия проводятся 2 раза в неделю по 2 академических часа с 10 минутным перерывом.

Цель программы –

Формирование и развитие творческих способностей учащихся посредством сборки робототехнических объектов и программированием с последующим использованием возможностей, Практическое применение учениками знаний, полученных в ходе работы по курсу для разработки и внедрения инноваций в дальнейшей жизни, воспитание информационной, технической и исследовательской культуры.

Предметные результаты:

Задачи:

Обучающие:

- формировать у обучающихся навыки использование современных разработок по робототехнике в области образования, организация на их основе активной внеурочной деятельности;
- ознакомить обучающихся с комплексом базовых технологий, применяемых при создании роботов;
 - углубить базовые знания по физике, информатике и математике;
- научить обучающихся решать некоторые кибернетических задачи, результатом каждой из которых будет работающий механизм или робот с автономным управлением.

Развивающие:

- развивать у обучающихся инженерное мышление, навыки конструирования, программирования и эффективного использования кибернетических систем;
- развивать у обучающихся мелкую моторику, внимательность, аккуратность и изобретательности;
- развивать креативное мышление и пространственное воображение у обучающихся;
- ориентировать обучающихся на участие в играх, конкурсах и состязаниях роботов в качестве закрепления изучаемого материала и в целях мотивации обучения.

Воспитывающие:

- воспитывать чувство гордости за достижения нашей страны в области науки и техники;
 - воспитывать гражданственность и патриотизм;
- воспитывать трудолюбие, чувство взаимопомощи, умение работать индивидуально и в группе, находить общее решение и аргументировано отстаивать свою точку зрения;
- воспитывать у обучающихся научно-деятельностный стиль мышления.

•

Планируемые результаты.

Личностный результат:

- берет на себя инициативу;
- проявляет стремление к самостоятельной работе, усовершенствованию известных моделей и алгоритмов, созданию творческих проектов;
- самостоятельно готовится к состязаниям, стремится к получению высокого результата;
 - проявляет интерес к техническим профессиям;
 - ответственно относится к порученному делу;

Метапредметные результат:

• прогнозирует конечный результат;

- способен оценить результаты своего труда;
- самостоятельно ставит перед собой цели и задачи;
- умеет анализировать модель по признакам;
- сотрудничает со всеми обучающимися в коллективе.

Образовательный результат:

- знает правила безопасной работы с инструментами необходимыми при конструировании робототехнических средств;
 - - знает принципы работы простейших механизмов;
- понимает принципы устройства робота как кибернетической системы;
- умеет использовать простейшие регуляторы для управления роботом;
- умение собирать базовые модели роботов и усовершенствовать их для выполнения конкретного задания;
 - умение работать по предложенным инструкциям;
 - умения творчески подходить к решению задачи;
 - умения довести решение задачи до работающей модели;
- умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- умение работать над проектом в команде, эффективно распределять обязанности;
- знать основные понятия, использующие в робототехнике: мотор, датчик наклона, датчик расстояния, порт, разъем, USB-кабель, меню, панель инструментов.
 - должен уметь:
 - - создавать и запускать программы для забавных механизмов;
- получать необходимую информацию об объекте деятельности, используя рисунки, схемы, эскизы, чертежи (на бумажных и электронных носителях);
 - умеет решать задачи с использованием одного регулятора;
- обладает основными навыками программирования в графической среде

1.2 Содержание программы

Учебный план.

№	Название раздела, темы	K	оличество	Форма	
Π/Π		Всего	Теория	Практика	аттестации/контроля
1	Введение.	6	6	-	Тест
	Знакомимся с набором				Тест и
2	LegoMindstorms EV3 сборки	2	2	-	Самостоятельная
	45544.				работа
	Языкп рограммирования				Самостоятельная
3	Lego Mindstorms	10	6	4	работа
	Education EV3.				
4	Блоки датчиков.	16	5	11	Самостоятельная
					работа
5	Программирование Lego	94	21	73	Самостоятельная
	Mindstorms Education				работа
	EV3.				
6	Создание роботов.	12	-	12	Самостоятельная
	_				работа
7	Итоговая работа.	4	-	4	Презентация
					групповых
					проектов
	Итого часов:	144	40	104	

Содержание учебного плана

Тема 1. Введение.

Введение. Техника безопасности.

Тема 2. Знакомимся с набором LegoMindstorms EV3 сборки 45544.

Знакомство с конструктором LegoMindstorms EV3 сборки 45544. Способы соединения деталей. Правила работы с конструктором Lego.Основные детали конструктора Lego.Спецификация конструктора.Сбор не программируемой модели.

Тема 3. Язык программирования Lego Mindstorms Education EV3.

Знакомство с командами: Запусти мотор вперед, назад. Знакомство с EV3. Кнопки управления.Передача программы. Запуск программы.Отработка составления простейшей программы по шаблону, передачи и запуска программы.

Тема 4. Блоки датчиков.

Моторы EV3. Большой мотор и средний мотор. Датчик цвета.

Гироскопический датчик. Ультразвуковой датчик. Инфракрасный датчик.

Сборка модели с использованием датчика. Составление программы, передача, демонстрация.

Тема 5. Программирования LegoMindstorms Education EV3.

Введение в язык программирования.

Практическая работа. Программирование модели.

Тема 6. Создание роботов.

Доработка конструкций роботов и программ. Отладка конструкций роботов и программ. Движения по заданной траектории. Отладка конструкций роботов и программ.

Тема 7. Итоговое занятие.

Практическая работа. Демонстрация роботов.

2. Комплекс организационно-педагогических условий 2.1 Календарный учебный график

N п/п	Тема занятия	Кол-во часов	Форма занятия	Форма контроля	Дата планируемая (число, месяц)	Дата фактическая (число, месяц)	Причина изменения даты
	I	АЗДЕЛ 1	. Введение	е 18 часов			
1.	Вводное занятие. Введение в робототехнику	2	Теория	Тест			
2.	Правила поведения и ТБ в кабинете информатики и при работе с конструкторами	2	Теория	Тест			
3.	Конструкторы компании LEGO	2	Теория	Тест			
4.	Знакомимся с наборомLegoMindstorms EV3 сборки 45544	2	Теория	Тест			
5.	Технология EV3	2	Теория	Тест			
6.	Понятие команды, программа и программирование	2	Теория	Тест			
7.	Ознакомление с визуальной средой программирования LegoMindstorms EV3	2	Теория	Тест			
8.	Конструирование первого робота по инструкции	2	Практика	Практическая работа			
9.	Создание простейшей программы	2	Практика	Практическая работа			

	РАЗДЕЛ 2. Блоки датчиков 16 часов							
10.	Моторы EV3. Большой мотор и средний мотор	2	Теория	Тест				
11.	Конструирование кубоида	2	Практика	Практическая работа				
12.	Освобождение кубоида	2	Практика	Практическая работа				
13.	Датчик цвета. Стоп-линия для робота	2	Теория	Тест				
14.	Гироскопический датчик	2	Теория	Тест				
15.	Ультразвуковой датчик	2	Практика	Практическая работа				
16.	Тестирование датчиков	2	Практика	Практическая работа				
17.	Самостоятельная творческая работа учащихся	2	Практика	Практическая работа				
	РАЗДІ	ЕЛ 3. Про	ограммиро	вание 94 часов				
18.	Понятие многозадачности	2	Теория	Тест				
19.	Конструирование робота	2	Практика	Практическая работа				
20.	Программирование робота	2	Практика	Практическая работа				
21.	Самостоятельная работа	2	Практика	Практическая работа				

22.	Первая программа с циклом	2	Теория	Тест
23.	Программирование. Приводная платформа	2	Практика	Практическая работа
24.	Программирование. Датчик касания – приводная платформа	2	Практика	Практическая работа
25.	Самостоятельная работа	2	Практика	Практическая работа
26.	Понятия переключатель, многопозиционный переключатель	2	Теория	Тест
27.	Программирование. Приводная платформа	2	Практика	Практическая работа
28.	Программирование. Датчик цвета вниз – приводная платформа	2	Практика	Практическая работа
29.	Программирование. Датчик цвета вперед— приводная платформа Кубоид	2	Практика	Практическая работа
30.	Самостоятельная работа	2	Практика	Практическая работа
31.	Понятие шины данных, ее назначение.	2	Теория	Тест
32.	Программирование. Ультразвуковой датчик-модуль Кубоид	2	Практика	Практическая работа
33.	Самостоятельная работа	2	Практика	Практическая работа

			1	
34.	Понятие о случайной величине	2	Теория	Тест
35.	Программирование. Приводная платформа	2	Практика	Практическая работа
36.	Самостоятельная работа	2	Практика	Практическая работа
37.	Программирование. Приводная платформа	2	Теория	Тест
38.	Программирование. Датчик цвета – приводная платформа	2	Практика	Практическая работа
39.	Программирование. Датчик касания – приводная платформа	2	Практика	Практическая работа
40.	Самостоятельная работа	2	Практика	Практическая работа
41.	Программирование. Ультразвуковой датчик-приводная платформа	2	Теория	Тест
42.	Самостоятельная работа	2	Практика	Практическая работа
43.	Программирование. Ультразвуковой датчик – приводная платформа Кубоид	2	Теория	Тест
44.	Самостоятельная работа	2	Практика	Практическая работа
45.	Математика в программирование	2	Практика	Практическая работа

46.	Программирование. Приводная платформа	2	Практика	Практическая работа
47.	Самостоятельная работа	2	Практика	Практическая работа
48.	Программирование. Гироскопический датчик - Модуль	2	Практика	Практическая работа
49.	Самостоятельная работа	2	Практика	Практическая работа
50.	Отношения. Программирование. Датчик цвета – приводная платформа	2	Теория	Тест
51.	Самостоятельная работа	2	Практика	Практическая работа
52.	Понятие переменной. Ввод значения переменной	2	Практика	Практическая работа
53.	Программирование. Датчик касания	2	Практика	Практическая работа
54.	Самостоятельная работа	2	Практика	Практическая работа
55.	Программирование. Датчик цвета вниз	2	Практика	Практическая работа
56.	Самостоятельная работа	2	Практика	Практическая работа
57.	Установление соединения посредством Bluetooth между двумя модулями	2	Практика	Практическая работа

58.	Самостоятельная работа	2	Практика	Практическая работа	
59.	Основы логики	2	Теория	Тест	
60.	Программирование. Ультразвуковой датчик	2	Практика	Практическая работа	
61.	Самостоятельная работа	2	Практика	Практическая работа	
62.	Понятие массива	2	Теория	Тест	
63.	Программирование	2	Практика	Практическая работа	
64.	Самостоятельная работа	2	Практика	Практическая работа	
	PA3	ДЕЛ 4. Со	оздание роб	отов 12 часов	
65.	Конструирование. Гиробоя	2	Практика	Соревнования моделей роботов.	
66.	Программирование. Гиробоя	2	Практика	Соревнования моделей роботов.	
67.	Конструирование. Сортировщик цветов	2	Практика	Соревнования моделей роботов.	
68.	Программирование. Сортировщик цветов	2	Практика	Соревнования моделей роботов.	
69.	Конструирование. Щенок	2	Практика	Соревнования моделей роботов.	
70.	Программирование. Щенок	2	Практика	Соревнования	

				моделей роботов.		
	РАЗДЕЛ 5. Итоговая работа 4 часов					
71.	Создание собственного робота	2	Практика	Презентация групповых проектов		
72.	Защита проекта	2	Практика	Презентация групповых проектов		

2.2. Условия реализации программы.

Материально – техническое обеспечение.

Для реализации программы данный курс обеспечен

- 1. наборами, LEGO Mindstorms EV3
- 2. дисками с программным обеспечением для работы с конструкторами LEGO, LEGO Mindstorms EV3
- 3. Посадочные места по количеству обучающихся 12 15 шт.
- 4. Персональный компьютер с выходом в сеть Интернет 8 шт.

Кадровое обеспечение

Программа реализуется педагогом дополнительного образования Штейнером Никитой Сергеевичем

2.3. Формы аттестации и оценочные материалы

При реализации программы используется несколько видов диагностики: Входящая диагностика проходит в форме беседы.

Текущая — проходит после изучения каждого раздела программы; предусматривает различные диагностические процедуры по усвоению программного материала и личностного развития учащихся: (тестирование, проверочные занятие, опрос, наблюдение за коллективной работой по выполнению и защите проектов, наблюдение за динамикой становления личностных качеств учащихся).

Итоговая диагностика по завершении первого года обучения проходит в форме тестирования и контрольного задания.

2.4. Список литературы

Для учителя:

- 1. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010.
- 2. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2013.
- 3. Журнал «Компьютерные инструменты в школе», подборка статей за 2012 г. «Основы робототехники на базе конструктора Lego Mindstorms EV3».
- 4. Lego Mindstorms EV3. The Mayan adventure. James Floyd Kelly. Apress, 2006.
- 5. Engineering with LEGO Bricks and ROBOLAB. Third edition. Eric Wang. College House Enterprises, LLC, 2012.

Для детей:

- 6. Робототехника для детей и родителей. С.А. Филиппов. СПб: Наука, 2010.
- 7. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2006.
- 8. Журнал «Компьютерные инструменты в школе», подборка статей за 2013 г. «Основы робототехники на базе конструктора Lego Mindstorms EV3».
- 9. Я, робот. Айзек Азимов. Серия: Библиотека приключений. М: Эксмо, 2002

Электронные ресурсы:

- 10. Блог-сообщество любителей роботов Лего с примерами программ [Электронный ресурс] /http://nnxt.blogspot.ru/2010/11/blog-post 21.html
- 11. Лабораторные практикумы по программированию [Электронный ресурс] http://www.edu.holit.ua/index.php?option=com_content&view= category&layout=blog&id=72&Itemid=159&lang=ru
- 12. Образовательная программа «Введение в конструирование роботов» и графический язык программирования роботов [Электронный ресурс] / http://learning.9151394.ru/course/view.php?id=280#program_blocks
- 13. Примеры конструкторов и программ к ним [Электронный ресурс] / Режим доступа: http://www.nxtprograms.com/index2.html
- 14. Программы для робота [Электронный ресурс] / http://service.lego.com/en- us/helptopics/?questionid=2655